$\newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\LP}{\left(} \newcommand{\RP}{\right)} \newcommand{\LS}{\left\lbrace} \newcommand{\RS}{\right\rbrace} \newcommand{\LA}{\left\langle} \newcommand{\RA}{\right\rangle} \newcommand{\LB}{\left[} \newcommand{\RB}{\right]} \newcommand{\MM}{\ \middle|\ } \newcommand{\exp}{\text{exp}} \newcommand{\abs}[1]{\left\vert#1\right\vert} \newcommand{\msr}[1]{m\left(#1\right)} \newcommand{\inv}[1]{#1^{-1}} \newcommand{\bkt}[1]{\LA \img{#1}\RA} \require{color}$
Rational Tangles
A rational tangle is given by alternating NE,SE and SE,SW twisting of the $0$ tangle [1]. Discussion of canonicality of this construction of twist vector can be found in [2]. A twist vector encodes these alternating twists as a list of integers. This induces a unique map from the rational tangles onto the rational numbers [1][2][3]. We accomplish this by interpreting a twist vector as a sequence for a continued fraction as: $$\LB a\ b\ c\RB=c+\frac{1}{b+\frac{1}{a}}$$
Instructions
Twist vectors here are space separated lists of integers.
A rational number here is “/” separating two integers.
- J. Conway,
An enumeration of knots and links, and some of their algebraic properties,
in Computational Problems in Abstract Algebra, Elsevier, 1970, pp. 329–358.doi:10.1016/B978-0-08-012975-4.50034-5 - J. Goldman and L. Kauffman,
Rational Tangles,
Advances in Applied Mathematics, vol. 18, no. 3, pp. 300–332, 1997. doi:10.1006/aama.1996.0511 - L. Kauffman and S. Lambropoulou,
On the Classification of Rational Knots,
arXiv: Geometric Topology, 2002. doi:10.48550/ARXIV.MATH/0212011