`$\newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\LP}{\left(} \newcommand{\RP}{\right)} \newcommand{\LS}{\left\lbrace} \newcommand{\RS}{\right\rbrace} \newcommand{\LA}{\left\langle} \newcommand{\RA}{\right\rangle} \newcommand{\LB}{\left[} \newcommand{\RB}{\right]} \newcommand{\MM}{\ \middle|\ } \newcommand{\exp}{\text{exp}} \newcommand{\abs}[1]{\left\vert#1\right\vert} \newcommand{\msr}[1]{m\left(#1\right)} \newcommand{\inv}[1]{#1^{-1}} \newcommand{\bkt}[1]{\LA \img{#1}\RA} \require{color}$`s

# Rational Tangles #

A rational tangle is given by alternating NE,SE and SE,SW twisting of the $0$ tangle ${}^{[2]}$ ${}^{[1]}$. Discussion of canonicality of this construction of twist vector can be found in ${}^{[2]}$. A twist vector encodes these alternating twists as a list of integers. This induces a unique map from the rational tangles onto the rational numbers ${}^{[2]}$. We accomplish this by interpreting a twist vector as a sequence for a continued fraction as: $$\LB a\ b\ c\RB=c+\frac{1}{b+\frac{1}{a}}$$

# Instructions #

Twist vectors here are space seperated lists of integers.

A rational number here is “/” seperating two integers.

# Cite #

- Conway, J.H. “An Enumeration of Knots and Links, and Some of Their Algebraic Properties.” In
*Computational Problems in Abstract Algebra*, 329-58. Elsevier, 1970. https://doi.org/10.1016/B978-0-08-012975-4.50034-5. - Kauffman, Louis H., and Sofia Lambropoulou. “On the Classification of Rational Knots,” 2002. https://doi.org/10.48550/ARXIV.MATH/0212011.