`$\newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\LP}{\left(} \newcommand{\RP}{\right)} \newcommand{\LS}{\left\lbrace} \newcommand{\RS}{\right\rbrace} \newcommand{\LA}{\left\langle} \newcommand{\RA}{\right\rangle} \newcommand{\LB}{\left[} \newcommand{\RB}{\right]} \newcommand{\MM}{\ \middle|\ } \newcommand{\exp}{\text{exp}} \newcommand{\abs}[1]{\left\vert#1\right\vert} \newcommand{\msr}[1]{m\left(#1\right)} \newcommand{\inv}[1]{#1^{-1}} \newcommand{\bkt}[1]{\LA \img{#1}\RA} \require{color}$`s
Rational Tangles
A rational tangle is given by alternating NE,SE and SE,SW twisting of the $0$ tangle${}^{[2]}$${}^{[1]}$. Discussion of canonicality of this construction of twist vector can be found in ${}^{[2]}$. A twist vector encodes these alternating twists as a list of integers. This induces a unique map from the rational tangles onto the rational numbers${}^{[2]}$. We accomplish this by interpreting a twist vector as a sequence for a continued fraction as: $$\LB a\ b\ c\RB=c+\frac{1}{b+\frac{1}{a}}$$
Instructions
Twist vectors here are space seperated lists of integers.
A rational number here is “/” seperating two integers.
Sources
- Conway, J.H. “An Enumeration of Knots and Links, and Some of Their Algebraic Properties.” In Computational Problems in Abstract Algebra, 329-58. Elsevier, 1970. https://doi.org/10.1016/B978-0-08-012975-4.50034-5.
- J.R. Goldman, L.H. Kauffman, Rational Tangles, Advances in Applied Math., 18 (1997), 300-332.