$ $

The Tanglenomicon

A table of two string tangles

The algebraic tangles

Zachary Bryhtan, Nicholas Connolly, Isabel Darcy, Paria Karimi, Ethan Rooke, Joseph Starr*

Mathematics Department at The University of Iowa

Joint Math Meetings 2025 (1/10/25)

Tangles

“We define a tangle as a portion of a knot diagram from which there emerge just 4 arcs pointing in the compass directions NW, NE, SW, SE.” - Conway, J.H.

NWNESWSE

Conway, J.H. “An Enumeration of Knots and Links, and Some of Their Algebraic Properties.” In Computational Problems in Abstract Algebra, 329-58. Elsevier, 1970. https://doi.org/10.1016/B978-0-08-012975-4.50034-5

$\quad$
$\quad$
$\quad$

Basic Operations

Operation $+$

$+$
$=$
$=$
$=$
$2$

Operation $\vee$

$\vee$
$=$
$=$
$=$
$\frac{1}{2}$

Algebraic Tangles

All possible tangles made from $+$ and $\vee$ on basic tangles

Algebraic
A tangle build from $\vee$ and $+$ on some rational tangles.
$$\LP\color{var(--r-Purple)}\LB3\ 2\ 3\RB+\LB3\ 2\ 3\RB\color{var(--r-Foreground)}\RP\vee\LP\color{var(--r-Purple)}\LB3\ 2\ 3\RB+\LB3\ 2\ 3\RB\color{var(--r-Foreground)}\RP$$

But actually arborescent

Arborescent knots (and tangles) are constructed by taking a collection of twisted bands described by a weighted tree and connecting them with successive plumbing.

It’s straight forward to see (you should see in the example) that algebraic and arborescent constructions describe the same class of object.

F. Bonahon and L. Siebenmann, New geometric splittings of classical knots, and the classification and symmetries of arborescent knots, http://www-bcf.usc.edu/~fbonahon/Research/Publications.html

2
3 2 -3 0 4 3
3 2 -3 0 4 {ι,ξ,ς,η}

Anatomy of a tree

Rings

$\ $

F. Bonahon and L. Siebenmann, New geometric splittings of classical knots, and the classification and symmetries of arborescent knots, http://www-bcf.usc.edu/~fbonahon/Research/Publications.html

3 2 -3 0 4 3 1 2 2 1 2 2 3 2 -3 2 0 4 3 1 1 2 2
$\ $
Definition
The count of rings attached to a vertex is the Ring Number of the vertex. Ring numbers are noted as an augmentation of the vertex.
Definition
A vertex with ring number $\geq 1$ or valence $\geq 3$ is called an Essential Vertex.

F. Bonahon and L. Siebenmann, New geometric splittings of classical knots, and the classification and symmetries of arborescent knots, http://www-bcf.usc.edu/~fbonahon/Research/Publications.html

3 2 -3 2 1 4 3
3 -3 4 3
Definition
The subtrees remaining after excising all essential vertices and their bonds (half edges) are called the Sticks of a tree.

F. Bonahon and L. Siebenmann, New geometric splittings of classical knots, and the classification and symmetries of arborescent knots, http://www-bcf.usc.edu/~fbonahon/Research/Publications.html

Linearization of Arborescent tangles

ι<1(2[3][-3]){2 -2 <2([3][4])[8]([2]1[2])>}> ι<1(2[3][-3])((<2([3][4])[8]([2]1[2])>-2)2)> ι

$\pm$ Abbreviated Canonical Tangle Trees

  • Weight Condition At each vertex of $\Gamma$, at most one weight is non-zero.
  • Stick Condition On any stick the weights are non-zero except for end vertices that have a bond free in $\Gamma_0$ and for the case $\Gamma_0=\alpha(0[0])$, $\Gamma_0=\alpha[0]$. The non-zero weights along any stick are of alternating sign. No end vertex of a stick has weight $\pm 1$ unless it has a bond free in $\Gamma_0$, or $\Gamma_0=[\pm 1]$.
  • One of:
    • Positivity Condition There are no sticks in $\Gamma_0$ of the form $[-1],\ [ -2],\ \alpha[-2],\ \alpha[2]\alpha$.
    • Negative Condition There are no sticks in $\Gamma_0$ of the form $[1],\ [ 2],\ \alpha[2],\ \alpha[2]\alpha$
  • Abbreviation Condition A vertex of $\Gamma_0$ of ring number $1$ has valence $\geq 2$, and $\Gamma_0$ is not $\alpha\langle 2\ 0\rangle$. Every ring subtree of $\Gamma$ is adjacent to a non-essential vertex.

F. Bonahon and L. Siebenmann, New geometric splittings of classical knots, and the classification and symmetries of arborescent knots, http://www-bcf.usc.edu/~fbonahon/Research/Publications.html

Theorem (Bonahon and Siebenmann)
Consider two $\pm$ canonical abbreviated arborescent tangle trees $\Gamma$ and $\Gamma^\prime$. Plumbing according to $\Gamma$ and $\Gamma^\prime$ gives isomorphic arborescent tangles if and only if $\Gamma$ and $\Gamma^\prime$ can be deduced from each other by a sequence of moves in the calculus of arborescent tangle trees (happy to talk about the calculus another time).
Note
Note $\pm$ abbreviated canonical tangle trees do not describe minimal diagrams.

F. Bonahon and L. Siebenmann, New geometric splittings of classical knots, and the classification and symmetries of arborescent knots, http://www-bcf.usc.edu/~fbonahon/Research/Publications.html

Definition
We call the crossing number of a the tangle diagram described by a $\pm$ abbreviated canonical tangle tree the canonical arborescent crossing number (CACN) which is given by: $$\text{CACN}=4\cdot\#(\text{rings in the tree})+\sum |\text{weights}|$$

Rational Tangle Trees

ι 3 3 -2 3 -2

Montesinos Tangle Trees

-3 -3 2 -3 2 ι -3 -3 2 -3 2 -3 -3 2 -3 2

Constructing an arborescent tangle

Game plan

  1. Find a way to generate abstract rooted trees
  2. Modify that method to get tangle trees
$\rightarrow$
$\rightarrow$

Nakano, S. (2002). Efficient generation of plane trees. In Information Processing Letters (Vol. 84, Issue 3, pp. 167-172). Elsevier BV. https://doi.org/10.1016/s0020-0190(02)00240-5

$\rightarrow$
$\rightarrow$

Nakano, S. (2002). Efficient generation of plane trees. In Information Processing Letters (Vol. 84, Issue 3, pp. 167-172). Elsevier BV. https://doi.org/10.1016/s0020-0190(02)00240-5

Building a tangle tree

  1. List the integral tangles
  2. Find the trees
  3. Find the ornaments
  4. Hang the ornaments on the trees
Example: Building the tangles with canonical arborescent crossing number (CACN) 4
1 -1 2 -2 3 2 -3 -1 -2 1
$\rightarrow$
Trees with $4$ crossings

The integral 4 tangle

4

Call the CACN of a tree $T$ and the CACN of an ornament $O$. For the tangle generated by hanging an ornament to have $\text{CACN}=4$ we need $T+O=4$.

Additionally, hanging an ornament must satisfy the stick condition. Meaning:

  • $1<O\leq 4=\text{CACN}$ and $0\leq T<4$
  • Signs of weights on an ornament may need to be adjusted.$\text{Example: }[1\ -2\ 3]\to [-1\ 2\ -3]$
  • Tangles with root which is weight $0$ and non-essential are excluded, except $\iota[0]$.

This gives the following for $T$ and $O$:

$\small\begin{array}{|c|c|} \hline T & O \\ \hline 2 & 2 \\ \hline 1 & 3 \\ \hline 0 & 4 \\ \hline \end{array}$

$\rightarrow$
$2$
$2$
$\rightarrow$
$4$
2 -2
2
$\rightarrow$
-2 2 -2 2 -2 -2
$\rightarrow$
$1$
$3$
$\rightarrow$
$4$
1 -1
3 -2 1
$\rightarrow$
-3 1 3 -1 2 -1 1 -2 1 -1
$\rightarrow$
$0$
$4$
$\rightarrow$
$4$
-3 1 2 -1 1 2 -2 -2 -2 4
$\rightarrow$
-2 2 -2 1 -1 3 -1 -4 2 2

Tangles of canonical arborescent

crossing number up to 4

-2 1 -1 -2 -2 -2 -2 1 -3 -2 2 2 -1 2 2 3 2 -2 1 -3 1 -1 3 -1 2 2 -1 1 4 -4

Using The Tanglenomicon

Alpha

To play with a live version, visit:

https://tanglenomicon.com

Technologies

ThrowTheSwitch/Unity Simple Unit Testing for C C 3.3k 935

joe-starr.com

Sources

  1. Dror Bar-Natan The Most Important Missing Infrastructure Project in Knot Theory
  2. Kauffman, L. H., and S. Lambropoulou. “From Tangle Fractions to DNA.” In Topology in Molecular Biology, edited by Michail Ilych Monastyrsky, 69-110. Biological and Medical Physics, Biomedical Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. https://doi.org/10.1007/978-3-540-49858-2_5.
  3. Moon, Hyeyoung, and Isabel K. Darcy. “Tangle Equations Involving Montesinos Links.” Journal of Knot Theory and Its Ramifications 30, no. 08 (July 2021): 2150060. https://doi.org/10.1142/S0218216521500607.
  4. Conway, J.H. “An Enumeration of Knots and Links, and Some of Their Algebraic Properties.” In Computational Problems in Abstract Algebra, 329-58. Elsevier, 1970. https://doi.org/10.1016/B978-0-08-012975-4.50034-5.
  5. Louis H. Kauffman and Sofia Lambropoulou. Classifying and applying rational knots and rational tangles. In DeTurck, editor, Contemporary Mathematics, volume 304, pages 223-259, 2001
  6. Alain Caudron. Classification des nœuds et des enlacements, volume 4 of Publications Math ́ematiques d’Orsay 82 [Mathematical Publications of Orsay 82]. Universit ́e de ParisSud, D ́epartement de Mathe ́matique, Orsay, 1982.
  7. Robert Glenn Scharein. Interactive topological drawing. ProQuest LLC, Ann Arbor, MI, 1998. Thesis (Ph.D. The University of British Columbia (Canada). URL: https://www.knotplot.com/.
  8. Jablan, S., & Sazdanović, R. (2007). Linknot. In Series on Knots and Everything. WORLD SCIENTIFIC. https://doi.org/10.1142/6623
  9. Dowker, C. H., & Thistlethwaite, M. B. (1983). Classification of knot projections. In Topology and its Applications (Vol. 16, Issue 1, pp. 19-31). Elsevier BV. https://doi.org/10.1016/0166-8641(83)90004-4
  10. Hoste, J., Thistlethwaite, M., & Weeks, J. (1998). The first 1,701,936 knots. In The Mathematical Intelligencer (Vol. 20, Issue 4, pp. 33-48). Springer Science and Business Media LLC. https://doi.org/10.1007/bf03025227
  11. Burton, B. A. (2020). The Next 350 Million Knots. Schloss Dagstuhl - Leibniz-Zentrum Für Informatik. https://doi.org/10.4230/LIPICS.SOCG.2020.25
  12. C. Livingston and A. H. Moore, KnotInfo: Table of Knot Invariants, knotinfo.math.indiana.edu, today’s date (eg. August 24, 2023).
  13. Schubert, Horst. “Knoten mit zwei Brücken..” Mathematische Zeitschrift 65 (1956): 133-170. http://eudml.org/doc/169591.
  14. Jos ́e M. Montesinos. Seifert manifolds that are ramified two-sheeted cyclic coverings. Bol. Soc. Mat. Mexicana (2), 18:1-32, 1973.
  15. F. Bonahon and L. Siebenmann, New geometric splittings of classical knots, and the classification and symmetries of arborescent knots, http://www-bcf.usc.edu/~fbonahon/Research/Publications.html
  16. Connolly, Nicholas. Classification and Tabulation of 2-String Tangles: The Astronomy of Subtangle Decompositions. University of Iowa, 2021, https://doi.org/10.17077/etd.005978.
  17. Nakano, S. (2002). Efficient generation of plane trees. In Information Processing Letters (Vol. 84, Issue 3, pp. 167-172). Elsevier BV. https://doi.org/10.1016/s0020-0190(02)00240-5

Sources

  1. Facebook, Public domain, via Wikimedia Commons
  2. FastAPI The MIT License (MIT)
  3. Carlos Baraza, CC0, via Wikimedia Commons
  4. Qq1040058283, Public domain, via Wikimedia Commons
  5. Jeremy Kratz, Public domain, via Wikimedia Commons
  6. Cython and Python, Apache License 2.0, via Wikimedia Commons
  7. mermaidjs
  8. www.python.org, GPL, via Wikimedia Commons
  9. Mongodb
  10. Ryan Dahl, MIT, via Wikimedia Commons
  11. Holger Krekel, CC BY 2.5, via Wikimedia Commons
  12. Alon Zakai, MIT, via Wikimedia Commons
  13. Cmake team. The original uploader was Francesco Betti Sorbelli at Italian Wikipedia.. Vectorized by Magasjukur2, CC BY 2.0, via Wikimedia Commons
  14. Emoji One, CC BY-SA 4.0, via Wikimedia Commons
  15. Matt Brooks, CC0, via Wikimedia Commons