`$\newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\LP}{\left(} \newcommand{\RP}{\right)} \newcommand{\LS}{\left\lbrace} \newcommand{\RS}{\right\rbrace} \newcommand{\LA}{\left\langle} \newcommand{\RA}{\right\rangle} \newcommand{\LB}{\left[} \newcommand{\RB}{\right]} \newcommand{\MM}{\ \middle|\ } \newcommand{\exp}{\text{exp}} \newcommand{\abs}[1]{\left\vert#1\right\vert} \newcommand{\msr}[1]{m\left(#1\right)} \newcommand{\inv}[1]{#1^{-1}} \newcommand{\bkt}[1]{\LA \img{#1}\RA} \require{color}$`s
Zachary Bryhtan, Nicholas Connolly, Isabel Darcy, Ethan Rooke, Joseph Starr*
Mathematics Department at The University of Iowa
C. Livingston and A. H. Moore, KnotInfo: Table of Knot Invariants, https://knotinfo.math.indiana.edu/, today’s date (eg. August 24, 2023)
“We define a tangle as a portion of a knot diagram from which there emerge just 4 arcs pointing in the compass directions NW, NE, SW, SE.” - Conway, J.H.
Conway, J.H. “An Enumeration of Knots and Links, and Some of Their Algebraic Properties.” In Computational Problems in Abstract Algebra, 329-58. Elsevier, 1970. https://doi.org/10.1016/B978-0-08-012975-4.50034-5
For any $N$ an obvious twist vector is the twist vector of all $1$s $$[1\ 1\ 1\ \cdots\ 1]$$ Noting that when we write this sequence, we have $N-1$ spaces.
If we choose to place a $+$ instead of the left most space we get $$[1+1\ 1\ \cdots\ 1]=[2\ 1\ \cdots\ 1]$$ we’re free to make this choice for each space
this gives $N-1$ choices between ‘$+$’ and space $$[1\square 1\square 1\square\cdots\square1]$$ letting us generate twist vectors by simply counting from $0\to 2^{N-1}$.
i | tmplt | cnt | j | tv |
---|---|---|---|---|
0 | 0000 | 5 | 0 | [1,1,1,1,1] |
0 | 0000 | 4 | 1 | [1,1,1,1,1] |
0 | 0000 | 3 | 2 | [1,1,1,1,1] |
0 | 0000 | 2 | 3 | [1,1,1,1,1] |
0 | 0000 | 1 | 4 | [1,1,1,1,1] |
0 | 0000 | 0 | 4 | [1,1,1,1,1] |
i | tmplt | cnt | j | tv |
---|---|---|---|---|
6 | 0110 | 5 | 4 | [1,1,1,1,1] |
6 | 0011 | 4 | 1 | [1,1,1,1,1] |
6 | 0001 | 3 | 1 | [1,2,1,1,1] |
6 | 0000 | 2 | 1 | [1,3,1,1,1] |
6 | 0000 | 1 | 2 | [1,3,1,1,1] |
6 | 0000 | 0 | 2 | [1,3,1,1,1] |
i | tmplt | cnt | j | tv |
---|---|---|---|---|
7 | 0111 | 5 | 0 | [1,1,1,1,1] |
7 | 0011 | 4 | 0 | [2,1,1,1,1] |
7 | 0001 | 3 | 0 | [3,1,1,1,1] |
7 | 0000 | 2 | 0 | [4,1,1,1,1] |
7 | 0000 | 1 | 1 | [4,1,1,1,1] |
7 | 0000 | 0 | 1 | [4,1,1,1,1] |
We can write a canonical twist vector by taking the odd length vectors (appending $0$ where needed).
The rational number for a twist vector is computed by taking the twist vector as a finite continued fraction, that is: $$\LB a\ b\ c\RB=c+\frac{1}{b+\frac{1}{a}}$$
To play with twist vectors and continued fractions, visit: