Comprehensive Exam (8/19/24)

The Tanglenomicon

Zachary Bryhtan, Nicholas Connolly, Isabel Darcy, Ethan Rooke, Joseph Starr*

Mathematics Department at The University of Iowa

Knots

$\quad$
$\quad$
$\quad$

https://www.knotplot.com/

The natural question

How many knots?

Knot Tables

Lord Kelvin’s vortex theory of the atom

Atoms are knotted vortices in the æther.

By Hand

  • 1860’s Tait computes knots up to 7 crossings
    • 15 knots
  • 1870’s Tait, Kirkman, and Little compute knots up to 10 crossings
    • Takes about 25 years
    • 250 knots
  • 1960’s Conway computes knots up to 11 crossings
    • “A few hours”
    • 802 knots

By Computer

  • 1980’s Dowker and Thistlethwaite compute up to 13 crossings
    • First using a computer
    • 12,966 knots
  • 1990’s Hoste, Thistlethwaite, and Weeks compute up to 16 crossings
    • Computer runtime on the order of weeks
    • 1,701,936 knots
  • 2020’s Burton computes up to 19 crossings
    • 350 Million knots

KnotInfo

C. Livingston and A. H. Moore, KnotInfo: Table of Knot Invariants, https://knotinfo.math.indiana.edu/, today’s date (eg. August 24, 2023)

Conway

How did Conway compute 25 years of work in "a few hours"?

Tangles

“We define a tangle as a portion of a knot diagram from which there emerge just 4 arcs pointing in the compass directions NW, NE, SW, SE.” - Conway, J.H.

Conway, J.H. “An Enumeration of Knots and Links, and Some of Their Algebraic Properties.” In Computational Problems in Abstract Algebra, 329-58. Elsevier, 1970. https://doi.org/10.1016/B978-0-08-012975-4.50034-5

$\quad$
$\quad$
NWNESWSE
$\quad$
$\quad$
$\quad$

Basic Operations

Operation $+$

$+$
$=$
$=$
$=$
$2$

Operation $\vee$

$\vee$
$=$
$=$
$=$
$\frac{1}{2}$

The Tanglenomicon

A table of two string tangles

(up to fixed boundary)

Building up

$\ $
$\ $
$\ $
$\ $

Where we are

Rational Tangles

$\ $
$\begin{aligned}\to&\ \LP 3 \vee \frac{1}{2}\RP + 2\\&\\ \to&\ [3\ 2\ 2]\end{aligned}$
$\begin{aligned}\to&\ \LP 1 \vee \frac{1}{3}\RP + 1\\&\\ \to&\ [1\ 3\ 1]\end{aligned}$
$\ $
$\begin{aligned}\to& \frac{1}{4} + 1\,\,\\&\\ \to&\ [4\ 1]\end{aligned}$

Generation

For any $N$ an obvious twist vector is the twist vector of all $1$s $$[1\ 1\ 1\ \cdots\ 1]$$ Noting that when we write this sequence, we have $N-1$ spaces.

If we choose to place a $+$ instead of the left most space we get $$[1+1\ 1\ \cdots\ 1]=[2\ 1\ \cdots\ 1]$$ we’re free to make this choice for each space

this gives $N-1$ choices between ‘$+$’ and space $$[1\square 1\square 1\square\cdots\square1]$$ letting us generate twist vectors by simply counting from $0\to 2^{N-1}$.

Twist Vectors for $N=5$
$$\begin{array}{|l|l|l|l|} \hline [1\ 1\ 1\ 1\ 1]\ &\ [1\ 1\ 1\ 2]\ &\ [1\ 1\ 2\ 1]\ &\ [1\ 1\ 3]\\\hline [1\ 2\ 1\ 1]\ &\ [1\ 2\ 2]\ &\ [1\ 3\ 1]\ &\ [1\ 4]\\\hline [2\ 1\ 1\ 1]\ &\ [2\ 1\ 2]\ &\ [2\ 2\ 1]\ &\ [2\ 3]\\\hline [3\ 1\ 1]\ &\ [3\ 2]\ &\ [4\ 1]\ &\ [5]\\\hline \end{array}$$

Programmatic Description

stateDiagram-v2 direction LR state if_done <<choice>> State_i: i=0 State_ipp: i++ state "Construct TV from i as a bitfield" as tv_calc{ state "tmplt=i;j=0;cnt=N" as State_temp State_jpp: j++ State_cntmm: cnt-- State_sum_tv: TV[j]++ State_rsh: tmplt=tmplt>>1 state if_lsb <<choice>> state if_cnteo <<choice>> State_store_tv: Store TV [*] --> State_temp State_temp --> if_cnteo if_cnteo--> State_cntmm: if cnt>0 if_cnteo--> State_store_tv: if cnt==0 State_store_tv --> [*] State_cntmm -->if_lsb if_lsb -->State_sum_tv: if (tmplt & 0x01u)==1u State_sum_tv --> State_rsh if_lsb -->State_jpp: if (tmplt & 0x01u)==0u State_jpp --> State_rsh State_rsh --> if_cnteo } [*] --> State_i State_i --> if_done if_done --> tv_calc: if i < 2**(N-1) tv_calc --> State_ipp State_ipp --> if_done if_done --> [*]: if i == 2**(N-1)
i tmplt cnt j tv
0 0000 5 0 [1,1,1,1,1]
0 0000 4 1 [1,1,1,1,1]
0 0000 3 2 [1,1,1,1,1]
0 0000 2 3 [1,1,1,1,1]
0 0000 1 4 [1,1,1,1,1]
0 0000 0 4 [1,1,1,1,1]
i tmplt cnt j tv
6 0110 5 4 [1,1,1,1,1]
6 0011 4 1 [1,1,1,1,1]
6 0001 3 1 [1,2,1,1,1]
6 0000 2 1 [1,3,1,1,1]
6 0000 1 2 [1,3,1,1,1]
6 0000 0 2 [1,3,1,1,1]
i tmplt cnt j tv
7 0111 5 0 [1,1,1,1,1]
7 0011 4 0 [2,1,1,1,1]
7 0001 3 0 [3,1,1,1,1]
7 0000 2 0 [4,1,1,1,1]
7 0000 1 1 [4,1,1,1,1]
7 0000 0 1 [4,1,1,1,1]

Canonical Twist Vectors

We can write a canonical twist vector by taking the odd length vectors (appending $0$ where needed).

Canonical Twist Vectors for $N=5$
$$\begin{array}{|l|l|l|l|} \hline [1\ 1\ 1\ 1\ 1]\ &\ [1\ 1\ 1\ 2\ 0]\ &\ [1\ 1\ 2\ 1\ 0]\ &\ [1\ 1\ 3]\\\hline [1\ 2\ 1\ 1\ 0]\ &\ [1\ 2\ 2]\ &\ [1\ 3\ 1]\ &\ [1\ 4\ 0]\\\hline [2\ 1\ 1\ 1\ 0]\ &\ [2\ 1\ 2]\ &\ [2\ 2\ 1]\ &\ [2\ 3\ 0]\\\hline [3\ 1\ 1]\ &\ [3\ 2\ 0]\ &\ [4\ 1\ 0]\ &\ [5]\\\hline \end{array}$$

Computations

Rational Number (continued fraction)

The rational number for a twist vector is computed by taking the twist vector as a finite continued fraction, that is: $$\LB a\ b\ c\RB=c+\frac{1}{b+\frac{1}{a}}$$

Twist Vector to rational number
$$\ =\LB 3\ 2\ 2\RB=2+\frac{1}{2+\frac{1}{3}}=\frac{17}{7}$$
  • J.R. Goldman, L.H. Kauffman, Rational Tangles, Advances in Applied Math., 18 (1997), 300-332.
  • Conway, J.H. “An Enumeration of Knots and Links, and Some of Their Algebraic Properties.” In Computational Problems in Abstract Algebra, 329-58. Elsevier, 1970. https://doi.org/10.1016/B978-0-08-012975-4.50034-5

To play with twist vectors and continued fractions, visit:

https://joe-starr.com/resources/cont_frac_convert/

Parity

NWSWSENE
NW SW SE NE
NWSWSENE
NW SW SE NE
NWSWSENE
NW SW SE NE

Computing Parity

If we take the rational number $\frac{p}{q}$ associated with the rational tangle we get the following correspondence for parity

Parity Table
$\begin{array}{|c|c|c|c|} \hline p\ \%\ 2 &q\ \%\ 2&\text{Parity}\\ \hline 0 &0&N/A&\\ \hline 0 &1& 0 & \img{/presentations/comp/0.svg}\\ \hline 1 &0&\infty& \img{/presentations/comp/inf.svg}\\ \hline 1 &1& 1& \img{/presentations/comp/parity_1.svg}\\ \hline \end{array}$

Louis H. Kauffman and Sofia Lambropoulou. Classifying and applying rational knots and rational tangles. In DeTurck, editor, Contemporary Mathematics, volume 304, pages 223-259, 2001

Example
NWSWSENE
$$\ =[3\ 2\ 1]=1+\frac{1}{2+\frac{1}{3}}=\frac{10}{7}\to\text{ Parity: 0 }$$
NW SW SE NE

Closures

$\ $

Closure Equivalence and pivoting to knots

Theorem (Schubert)
Suppose that rational tangles with fractions $\frac{p}{q}$ and $\frac{p^{\prime}}{q^{\prime}}$ are given ( $p$ and $q$ are relatively prime and $0<p$. Similarly for $p^{\prime}$ and $q^{\prime}$). If $N\left(\frac{p}{q}\right)$ and $N\left(\frac{p^{\prime}}{q^{\prime}}\right)$ denote the corresponding rational knots obtained by taking numerator closures of these tangles, then $N\left(\frac{p}{q}\right)$ and $N\left(\frac{p^{\prime}}{q^{\prime}}\right)$ are topologically equivalent if and only if
(1) $p=p^{\prime}$
(2) either $q \equiv q^{\prime}(\bmod p)$ or $q q^{\prime} \equiv 1(\bmod p)$.

Schubert, Horst. “Knoten mit zwei Brücken..” Mathematische Zeitschrift 65 (1956): 133-170. http://eudml.org/doc/169591.

177175858%17=7

Montesinos

Existence of canonical diagrams for Montesinos tangles

Theorem (Bonahon and Siebenmann)
Every non-rational Montesinos tangle $T$ admits a canonical diagram satisfying the following construction: $$T \cong L_1+\cdots+L_m+\frac{k}{1}$$ where each $L_i \cong \frac{p_i}{q_i}$ is a rational subtangle in canonical form with fraction satisfying $0<\frac{p_i}{q_i}<1$, and $\frac{k}{1}$ is a horizontal integer subtangle.

F. Bonahon and L. Siebenmann, New geometric splittings of classical knots, and the classification and symmetries of arborescent knots, http://www-bcf.usc.edu/~fbonahon/Research/Publications.html

$+$
$=$
$$\ =\ $$
$$=[3\ 2\ 0] + [3\ 2\ 0]$$

Generation

For Montesinos tangles of crossing number $N$ we start by again generating twist vectors, however we require that each entry $e$ of the twist vector satisfies $2\leq e < N.$

We call these restricted set of twist vectors stencils.

Finding stencils for $N=5$
$$\begin{array}{|l|l|l|l|} \hline [1\ 1\ 1\ 1\ 1]\ &\ [2\ 1\ 1\ 1]\ &\ [1\ 2\ 1\ 1]\ &\ [1\ 1\ 2\ 1]\\\hline [1\ 1\ 1\ 2]\ &\ [3\ 1\ 1]\ &\ [1\ 3\ 1]\ &\ [1\ 1\ 3]\\\hline [2\ 2\ 1]\ &\ [2\ 1\ 2]\ &\ [1\ 2\ 2]\ &\ [3\ 2]\\\hline [2\ 3]\ &\ [4\ 1]\ &\ [1\ 4]\ &\ [5]\\\hline \end{array}$$

Now for each entry $e_i$ of the stencil, we generate a list of rational tangles of crossing number equal to $e_i$, with the restriction $0<\frac{p_i}{q_i}<1$. We then take all combinations of elements of these lists.

Montesinos tangles for $N=5$
\begin{array}{|l|} \hline \text{Rational Tangles CN: }2 \\\hline [1\ 1\ 0]=\frac{1}{2},\ [2]=\frac{2}{1} \ \\\hline \text{Rational Tangles CN: }3\\\hline [1\ 2\ 0]=\frac{1}{3},\ [2\ 1\ 0]=\frac{2}{3},\ [3]=\frac{3}{1}\\\hline \end{array}
$\quad$
\begin{array}{|l|l|} \hline \color{var(--r-Purple)}\text{Stencil:}[3\ 2]\ &\ \\\hline \color{var(--r-Foreground)}[1\ 2\ 0] + [1\ 1\ 0]\ &\ [2\ 1\ 0] + [1\ 1\ 0]\\\hline \color{var(--r-Purple)}\text{Stencil:}[2\ 3]\\\hline \color{var(--r-Foreground)}[1\ 1\ 0] + [1\ 2\ 0]\ &\ [1\ 1\ 0] + [2\ 1\ 0]\\\hline \end{array}

What about the ‘k’?

The construction for the canonical Montesinos tangles includes a trailing $\frac{k}{1}$ tangle. Our generation strategy seems to miss these.

What we’re actually generating with this algorithm is Montesinos tangles up to moveable boundary components of the tangle. To recover fixed boundary tangles we can append an integral $k$ summand to each lower crossing Montesinos tangle with a circle product (more to come).

Programmatic Description

stateDiagram-v2 direction LR state "For each stencil" as sten_loop{ state "Process stencil" as proc [*]-->proc proc --> [*] } [*]--> sten_loop sten_loop --> [*]
stateDiagram-v2 state "while overflow false" as sten_loop{ direction LR state "For each array entry" as entry_loop{ direction LR state "Set overflow as false" as set_flw state "Increment entry" as inc_entry state "Set overflow as true" as over_true state "Set entry to zero" as zero_entry state "Break" as brk state overflow <<choice>> [*] --> set_flw set_flw --> inc_entry inc_entry --> overflow overflow --> zero_entry : if entry >= stencil entry overflow --> brk : if entry < stencil zero_entry --> over_true brk --> [*] over_true --> [*] } state "Get rational tangle\nfor each array entry" as proc [*]-->proc proc --> entry_loop entry_loop --> [*] } state "Create len(stencil) array of all 0" as mk_ary state "Create overflow flag as false" as mk_flg [*]--> mk_ary mk_ary --> mk_flg mk_flg --> sten_loop sten_loop --> [*]
stateDiagram-v2 direction LR state "For each stencil" as sten_loop{ state "Process stencil 1" as proc1 state "Process stencil 2" as proc2 state "Process stencil 3" as proc3 state "..." as proc4 state "Process stencil n" as proc5 state join_state <<join>> [*]-->proc1 [*]-->proc2 [*]-->proc3 [*]-->proc4 [*]-->proc5 proc1-->join_state proc2-->join_state proc3-->join_state proc4-->join_state proc5-->join_state join_state --> [*] } [*]--> sten_loop sten_loop --> [*]

Using The Tanglenomicon

Alpha

To play with a live version, visit:

https://tanglenomicon.com

Where we’re going

Generalized Montesinos

Operation $\circ$

$\ $
$= \color{var(--r-Purple)}([1\ 2\ 0] + [1\ 2\ 0] + [1\ 1\ 0]) \color{var(--r-Foreground)}\circ \color{var(--r-Red)}[2\ 2]$

Moon, Hyeyoung, and Isabel K. Darcy. “Tangle Equations Involving Montesinos Links.” Journal of Knot Theory and Its Ramifications 30, no. 08 (July 2021): 2150060. https://doi.org/10.1142/S0218216521500607.

Generation

We just need to take our lists of Montesinos and rational tangles and glue them together with $\circ$.

$\ $
$= \color{var(--r-Purple)}([1\ 2\ 0] + [1\ 2\ 0] + [1\ 1\ 0]) \color{var(--r-Foreground)}\circ \color{var(--r-Red)}[2\ 2]$

Algebraic

All possible tangles made from $+$ and $\vee$ on basic tangles

Algebraic
A tangle build from $\vee$ and $+$ on some rational tangles.
$$\LP\color{var(--r-Purple)}\LB3\ 2\ 3\RB+\LB3\ 2\ 3\RB\color{var(--r-Foreground)}\RP\vee\LP\color{var(--r-Purple)}\LB3\ 2\ 3\RB+\LB3\ 2\ 3\RB\color{var(--r-Foreground)}\RP$$

Generation

A tale of two strate-trees

strate-tree 1

Algebraic Tangle Trees

As we saw, we can linearize any algebraic tangle as:

$$\LP\LB3\ 2\ 3\RB+\LB3\ 2\ 3\RB\RP\vee\LP\LB3\ 2\ 3\RB+\LB3\ 2\ 3\RB\RP$$

How do we programmatically generate tangles from this?

$$\LP\LB3\ 2\ 3\RB+\LB3\ 2\ 3\RB\RP\vee\LP\LB3\ 2\ 3\RB+\LB3\ 2\ 3\RB\RP$$

[3 2 3][3 2 3][3 2 3][3 2 3]++v

We can generate all possible algebraic expressions involving the basic tangles and twist vector of rational tangles.

Equivalently, all full binary trees with $N$ leaves. Where the tree’s internal nodes are labeled with combinations of $\vee$ and $+$ and leaves are labeled with all combinations of basic tangles or the twist vector of rational tangles.

We call these binary trees Algebraic Tangle Trees.

  • Alain Caudron. Classification des nœuds et des enlacements, volume 4 of Publications Math ́ematiques d’Orsay 82 [Mathematical Publications of Orsay 82]. Universit ́e de ParisSud, D ́epartement de Mathe ́matique, Orsay, 1982.
  • Connolly, Nicholas. Classification and Tabulation of 2-String Tangles: The Astronomy of Subtangle Decompositions. University of Iowa, 2021, https://doi.org/10.17077/etd.005978.

A problem

[3 2 3][3 2 3][3 2 3][3 2 3]++[3 2 0][3 2 3][3][3 2 3][3 2 3]+++

strate-tree 2

Arborescent Tangles

Bonahon and Siebenmann describe a classification for what they call Arborescent Tangles. Their Arborescent Tangles can be translated into our algebraic tangles.

These Arborescent Tangles are constructed by taking a collection of twisted bands described by a weighted tree and connecting them with successive Murasugi sums.

F. Bonahon and L. Siebenmann, New geometric splittings of classical knots, and the classification and symmetries of arborescent knots, http://www-bcf.usc.edu/~fbonahon/Research/Publications.html

3 2 -3 0 4 3

Arborescent Tangles

Generation

???

Into the future

Non-algebraic/Polygonal

4-valent planar graphs

$\quad$

4-valent planar graph insertions

$6^*\ *.[1\ 2\ 2\ 3\ 1].[1\ 2\ 2\ 3\ 1].[1\ 2\ 2\ 3\ 1].[1\ 2\ 2\ 3\ 1].[1\ 2\ 2\ 3\ 1]$

Generation

There exist tables of 4 valent graphs. We can use those with insertions from our list of algebraic tangles to generate all polygonal tangles.

Tooling

Design Goals

The design for The Tanglenomicon project prioritizes flexibility and extensibility. We want a feature, maybe “calculate Jones polynomial,” to be runnable in a jupyter notebook or on a university cluster. We’re aiming for a “write once deploy anywhere” design.

To that end we’ve decoupled functionality wherever feasible, taking a layered approach for system design.

flowchart LR Runner subgraph "Runnables" Generator Translator Computation end subgraph "Data Wranglers" Notation Storage end Runner -->|Runs| Generator Runner -->|Runs| Computation Runner -->|Runs| Translator Translator -->|Uses| Notation Generator -->|Uses| Notation Computation -->|Uses| Notation Generator -->|Uses| Storage Computation -->|Uses| Storage Translator -->|Uses| Storage

Runners

A runner is a human/machine interface layer. This abstracts the routines in lower layers for a user to interact with. This could be a CLI, Python binding, a Mathematica wrapper, or a web API.

Runnables

Generators

Generators create new data. A generator might look like a module to create rational tangles. They may use one or more Computations, Notations, or Translators.

Computation

Computations compute a value for a given data. A computation might look like a module for computing a Jones polynomial of a link, or computing the writhe of a tangle.

Translators

Translators define a conversion between two Notations. A translator might look like a module for converting from PD notation to Conway notation and back again.

Data Wranglers

Notations

Notations define a notational convention for a link/tangle. They describe a method for converting to and from a string representation of a link/tangle and data structure describing that link/tangle.

Storage

A storage module defines a storage interface for the application. The main inter-module type is string and the calling module is responsible for en/decoding the string with a notation module.

core libraries

-------------------------------------------------------------------------------
Language                     files          blank        comment           code
-------------------------------------------------------------------------------
C                               13            516            834           3563
C/C++ Header                    18            408            967           1939
C++                              7            107            222            912
Markdown                        21            418              0            794
SVG                              5              5              5            322
CMake                           41             74             21            236
TeX                              1              1              0             92
Cython                           1             21              2             83
JSON                             2              1              0             78
Python                           3             37             79             68
YAML                             3             17              9             64
Nix                              1             17             56             38
Text                             1              0              0              7
-------------------------------------------------------------------------------
SUM:                           117           1622           2195           8196
-------------------------------------------------------------------------------

Web API

┏━━━━━━━━━━━━━━━┳━━━━━━━┳━━━━━━━┳━━━━━━┳━━━━━━┳━━━━━━━━━┳━━━━━━┓
┃ Language      ┃ Files ┃     % ┃ Code ┃    % ┃ Comment ┃    % ┃
┡━━━━━━━━━━━━━━━╇━━━━━━━╇━━━━━━━╇━━━━━━╇━━━━━━╇━━━━━━━━━╇━━━━━━┩
│ Python        │    27 │  30.7 │ 1818 │ 53.9 │     766 │ 22.7 │
│ Markdown      │    56 │  63.6 │ 1473 │ 34.1 │       0 │  0.0 │
│ YAML          │     4 │   4.5 │   89 │ 93.7 │       6 │  6.3 │
│ __duplicate__ │     1 │   1.1 │    0 │  0.0 │       0 │  0.0 │
├───────────────┼───────┼───────┼──────┼──────┼─────────┼──────┤
│ Sum           │    88 │ 100.0 │ 3380 │ 43.4 │     772 │  9.9 │
└───────────────┴───────┴───────┴──────┴──────┴─────────┴──────┘

Web frontend

| language             | files |  code | comment | blank | total |
|----------------------|-------|-------|---------|-------|-------|
| JSON                 |     2 | 3,119 |       0 |     2 | 3,121 |
| SVG                  |     1 | 1,489 |       1 |     2 | 1,492 |
| JavaScript JSX       |     6 |   398 |       9 |    43 |   450 |
| source.markdown.math |     2 |   161 |       0 |    62 |   223 |
| TypeScript JSX       |     2 |   143 |       1 |    13 |   157 |
| JavaScript           |     7 |   141 |       2 |    14 |   157 |
| XML                  |     5 |    56 |       0 |     0 |    56 |
| JSON with Comments   |     1 |    37 |       0 |     1 |    38 |
| TypeScript           |     1 |    20 |       0 |     4 |    24 |
| CSS                  |     3 |    18 |       0 |     4 |    22 |
| Nix                  |     1 |    16 |       0 |     3 |    19 |
| HTML                 |     1 |    13 |       0 |     1 |    14 |
| Docker               |     1 |    12 |       1 |    11 |    24 |
| Properties           |     1 |     9 |       1 |     2 |    12 |

Technologies

ThrowTheSwitch/UnitySimple Unit Testing for C C3.3k935

Sources

  1. Dror Bar-Natan The Most Important Missing Infrastructure Project in Knot Theory
  2. Kauffman, L. H., and S. Lambropoulou. “From Tangle Fractions to DNA.” In Topology in Molecular Biology, edited by Michail Ilych Monastyrsky, 69-110. Biological and Medical Physics, Biomedical Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. https://doi.org/10.1007/978-3-540-49858-2_5.
  3. Moon, Hyeyoung, and Isabel K. Darcy. “Tangle Equations Involving Montesinos Links.” Journal of Knot Theory and Its Ramifications 30, no. 08 (July 2021): 2150060. https://doi.org/10.1142/S0218216521500607.
  4. Conway, J.H. “An Enumeration of Knots and Links, and Some of Their Algebraic Properties.” In Computational Problems in Abstract Algebra, 329-58. Elsevier, 1970. https://doi.org/10.1016/B978-0-08-012975-4.50034-5.
  5. Louis H. Kauffman and Sofia Lambropoulou. Classifying and applying rational knots and rational tangles. In DeTurck, editor, Contemporary Mathematics, volume 304, pages 223-259, 2001
  6. Alain Caudron. Classification des nœuds et des enlacements, volume 4 of Publications Math ́ematiques d’Orsay 82 [Mathematical Publications of Orsay 82]. Universit ́e de ParisSud, D ́epartement de Mathe ́matique, Orsay, 1982.
  7. Robert Glenn Scharein. Interactive topological drawing. ProQuest LLC, Ann Arbor, MI, 1998. Thesis (Ph.D. The University of British Columbia (Canada). URL: https://www.knotplot.com/.
  8. Jablan, S., & Sazdanović, R. (2007). Linknot. In Series on Knots and Everything. WORLD SCIENTIFIC. https://doi.org/10.1142/6623
  9. Dowker, C. H., & Thistlethwaite, M. B. (1983). Classification of knot projections. In Topology and its Applications (Vol. 16, Issue 1, pp. 19-31). Elsevier BV. https://doi.org/10.1016/0166-8641(83)90004-4
  10. Hoste, J., Thistlethwaite, M., & Weeks, J. (1998). The first 1,701,936 knots. In The Mathematical Intelligencer (Vol. 20, Issue 4, pp. 33-48). Springer Science and Business Media LLC. https://doi.org/10.1007/bf03025227
  11. Burton, B. A. (2020). The Next 350 Million Knots. Schloss Dagstuhl - Leibniz-Zentrum Für Informatik. https://doi.org/10.4230/LIPICS.SOCG.2020.25
  12. C. Livingston and A. H. Moore, KnotInfo: Table of Knot Invariants, knotinfo.math.indiana.edu, today’s date (eg. August 24, 2023).
  13. Schubert, Horst. “Knoten mit zwei Brücken..” Mathematische Zeitschrift 65 (1956): 133-170. http://eudml.org/doc/169591.
  14. Jos ́e M. Montesinos. Seifert manifolds that are ramified two-sheeted cyclic coverings. Bol. Soc. Mat. Mexicana (2), 18:1-32, 1973.
  15. F. Bonahon and L. Siebenmann, New geometric splittings of classical knots, and the classification and symmetries of arborescent knots, http://www-bcf.usc.edu/~fbonahon/Research/Publications.html
  16. Connolly, Nicholas. Classification and Tabulation of 2-String Tangles: The Astronomy of Subtangle Decompositions. University of Iowa, 2021, https://doi.org/10.17077/etd.005978.

Sources

  1. Facebook, Public domain, via Wikimedia Commons
  2. FastAPI The MIT License (MIT)
  3. Carlos Baraza, CC0, via Wikimedia Commons
  4. Qq1040058283, Public domain, via Wikimedia Commons
  5. Jeremy Kratz, Public domain, via Wikimedia Commons
  6. Cython and Python, Apache License 2.0, via Wikimedia Commons
  7. mermaidjs
  8. www.python.org, GPL, via Wikimedia Commons
  9. Mongodb
  10. Ryan Dahl, MIT, via Wikimedia Commons
  11. Holger Krekel, CC BY 2.5, via Wikimedia Commons
  12. Alon Zakai, MIT, via Wikimedia Commons
  13. Cmake team. The original uploader was Francesco Betti Sorbelli at Italian Wikipedia.. Vectorized by Magasjukur2, CC BY 2.0, via Wikimedia Commons
/* A left shift multiplies the value of an integer by 2. */
size_t count_lim = 0x01u << (crossingNumber - 1);
for (size_t i = 0u; i < count_lim; i++)
{
    gen_rational_proc_template(i);
}
void proc_tmp(size_t template)
{
    uint8_t counter = crossingNumber;
    size_t tv_length = 0;
    uint8_t twist_vector[UTIL_TANG_DEFS_MAX_CROSSINGNUM]={1};

    while (counter > 0u)
    {
        counter--;
        if ((template & 0x01u) == 0)
        {
            tv_length++;
        }
        else
        {
            twist_vector[tv_length]++;
        }
        template = template >> 0x01u;
    }
    if (tv_length % 2 == 0)
    {
        evenperm_shift_write();
    }
    else
    {
        write();
    }
}