`$\newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\LP}{\left(} \newcommand{\RP}{\right)} \newcommand{\LS}{\left\lbrace} \newcommand{\RS}{\right\rbrace} \newcommand{\LA}{\left\langle} \newcommand{\RA}{\right\rangle} \newcommand{\LB}{\left[} \newcommand{\RB}{\right]} \newcommand{\MM}{\ \middle|\ } \newcommand{\abs}[1]{\left\vert#1\right\vert} \newcommand{\msr}[1]{m\left(#1\right)} \newcommand{\inv}[1]{#1^{-1}} \newcommand{\bkt}[1]{\LA \img{#1}\RA} \require{color}$`
Zachary Bryhtan, Nicholas Connolly, Isabel Darcy, Ethan Rooke, Joseph Starr*
Mathematics Department at The University of Iowa
"The Most Important Missing Infrastructure Project in Knot Theory" -Dr. Dror Bar-Natan [2012]
$\circ$
Rational Tangles
[3 2 2]
$$\to$$
$+$
Montesinos Tangles
[3 0 ] + [2 1 0] + [2 2 0]
$$\to$$
$\circ$
Generalized Montesinos Tangles
([3 0] + [3 0] + [2 0]) $\circ$ (1,2)
$+\ \vee$
Algebraic Tangles
([3 2 3] + [3 2 3]) ∨ ([3 2 3] + [3 2 3] )
$$\to$$
Non-Algebraic Tangles
6* *.[3 2 3 1].[3 2 3 1].[3 2 3 1].[3 2 3 1].[3 2 3 1]