`$\newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\LP}{\left(} \newcommand{\RP}{\right)} \newcommand{\LS}{\left\lbrace} \newcommand{\RS}{\right\rbrace} \newcommand{\LA}{\left\langle} \newcommand{\RA}{\right\rangle} \newcommand{\LB}{\left[} \newcommand{\RB}{\right]} \newcommand{\MM}{\ \middle|\ } \newcommand{\abs}[1]{\left\vert#1\right\vert} \newcommand{\msr}[1]{m\left(#1\right)} \newcommand{\inv}[1]{#1^{-1}} \newcommand{\bkt}[1]{\LA \img{#1}\RA} \require{color}$`
A Seifert surface for an oriented link in $S^3$ is a compact connected oriented surface smoothly embedded in $S^3$ with oriented boundary equal to the link.
Existence can be shown by an algorithm to construct a Seifert surface from a given link projection.
$$\to$$
We have then that as an abstract surface, a Seifert surface for a link is a disc with a number of “handles”
($D^1\times D^1$) added. That number is its genus.
We take the smallest genus of possible Seifert surfaces for a link as the genus of the link.
$2g=2-s-n+c$
$\text{Lk}\LP \mathscr{L}\RP=\text{#} \img{/presentations/Alex_Poly/crossing/Crossing_+.svg}-\text{#} \img{/presentations/Alex_Poly/crossing/Crossing_-.svg}$
We can put oriented simple closed curves through each of the bands.
A Seifert surface is oriented, it has a top side and bottom side. We can take a push off of each of the curves in the “up” (blue) direction
We can take an $\LP i,j\RP$ pair and compute $a_{i,j}=\text{Lk}\LP f_i,\ f_j^+\RP$
This populates a matrix:
$$\begin{bmatrix} \text{Lk}\LP f_1,\ f_1^+\RP & \text{Lk}\LP f_1,\ f_2^+\RP & \cdots & \text{Lk}\LP f_1,\ f_{2g}^+\RP\\ \text{Lk}\LP f_2,\ f_1^+\RP & \text{Lk}\LP f_2,\ f_2^+\RP & \cdots & \text{Lk}\LP f_2,\ f_{2g}^+\RP\\ \text{Lk}\LP f_3,\ f_1^+\RP & \text{Lk}\LP f_3,\ f_2^+\RP & \cdots & \text{Lk}\LP f_3,\ f_{2g}^+\RP\\ \vdots & \vdots & \ddots & \vdots\\ \text{Lk}\LP f_{2g},\ f_1^+\RP & \text{Lk}\LP f_{2g},\ f_2^+\RP & \cdots & \text{Lk}\LP f_{2g},\ f_{2g}^+\RP\\ \end{bmatrix}$$
$$\to$$
$$\begin{bmatrix} -1 & 1 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 1\\ 0 & -1 & 0 & 1\\ \end{bmatrix} $$
For an oriented link $\mathscr{L}$ and it’s associated Seifert matrix $S$ we define the Alexander polynomial of $\mathscr{L}$ as $\Delta_\mathscr{L}\LP t\RP=\text{det}\LP t^{\frac{1}{2}}S-t^{-\frac{1}{2}}S^T\RP$
$\operatorname{det}\LP t^{\frac{1}{2}}\begin{bmatrix} -1 & 1 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 1\\ 0 & -1 & 0 & 1\\ \end{bmatrix}-t^{\frac{-1}{2}}\begin{bmatrix} -1 & 1 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 1\\ 0 & -1 & 0 & 1\\ \end{bmatrix}^T\RP=-t^4+3 t^3-3 t^2+3 t-1 $
$\Delta_\mathscr{L}\LP t\RP$ is unique up to stabilization, a method for adding bands to the surface. Results in $\Delta_\mathscr{L}\LP t\RP$ being unique up to a $\pm t^k$.
$\operatorname{deg}\LP\Delta_\mathscr{L}\LP t\RP\RP\leq 2\large g$